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the exchanges of mass, momentum, and of course energy
between the two phases. However, for the sake of simplic-The paper is concerned with the construction of a numerical

method for the computation of the dispersion of a cloud of liquid ity, we do not introduce combustion models in this work
droplets by a turbulent gas flow field. The cloud of droplets is mod- but only consider vaporization of droplets since our main
eled by a semi-fluid system intermediate between a fluid model interest lies in the prediction of the dispersion of the cloudand a kinetic description of the dispersed phase. The semi-fluid

of droplets. This study is thus a preliminary step towardsmodel is deduced from the kinetic model by integration with respect
to the velocity variables and makes it possible to describe clouds the computation of the full piston in a Diesel engine.
of particles such that the velocity distribution of any family of parti- In order to model two-phase fluid flows, we might either
cles with a given radius and a given temperature found at a given chose an Eulerian model or a Lagrangian one. In the Eu-
location of the physical space is a Gaussian function. A numerical

lerian approach, each phase is modeled as a single fluid,scheme, consistent with the semi-fluid model and inspired by Per-
occupying the whole physical space. Exchange terms arethame’s or Deshpande’s kinetic schemes, is proposed. The interac-

tions with the gas phase are taken into account thanks to a particle included to account for the exchanges of mass, momentum,
in cell method. Numerical experiments illuminate the features of and energy between the two phases. Such models are usu-
the method. Q 1997 Academic Press ally obtained by averaging the Navier–Stokes equations

satisfied by the gas phase around the droplets and the
liquid phase inside the droplets. Since the location of the
droplets may change from one experiment to another one,1. INTRODUCTION
this method defines mean quantities that characterize the
two-phase flow, which are defined in the whole physicalThis work deals with the numerical simulation of va-
space. Nevertheless, the derivation of such models is usu-porizing two-phase fluid flows consisting of a spray of liquid
ally tricky and requires many assumptions on the velocitydroplets in a surrounding turbulent hot gas flow. The pre-
and radius distributions of the cloud of droplets. Further-diction of the turbulent induced mixing of the cloud of
more, the numerical treatment of Eulerian models is usu-droplets is of primary importance in the simulation of Die-
ally a difficult task which requires much work and thesel engines, for instance. In such devices, liquid fuel is
numerical results often poorly compare with experimentalinjected into the combustion chamber at high pressure,
results. On the contrary, physical laws are easily includedwhich causes breakup of the liquid core and formation

of small droplets. In this study we do not consider the in Lagrangian models. Here droplets are characterized by
atomization of fuel, which is still an open problem from their position in the phase space and the modeling stage
the numerical viewpoint. On the contrary, we propose a consists in writing the droplets trajectory in the phase
numerical method for the computation of the dispersion space. Here the description of the motion of the droplets
of a dilute spray by a turbulent gas flow field. We shall may be as complicated as necessary. The interaction with
thus assume no interactions between droplets such as the gas phase is taken into account through correlations:
breakup or collisions. Nevertheless, the mass of droplets the regression velocity of a droplet’s radius may depend
in practical devices such as Diesel engines is of the same for instance on the temperature and on the velocity of the
order as the mass of gas and one should take into account gas around the droplet. In the same manner production

terms are included in the gas phase equation so as to ensure
the global conservation of mass, momentum and energy of1 E-mail: komla@cmapx.polytechnique.fr.

2 E-mail: sainsau@cmapx.polytechnique.fr. the two-phase flow. Note that alternately, using Liouville’s
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theorem, the Lagrangian model may be written in the form method is proposed in Section 4. Numerical results are
shown in Section 5.of a kinetic one that gives the evolution of the probability

density function of the cloud of particles. This equation is
also known as the spray equation (see [1] for more details). 2. MODELING

Writing a Lagrangian model is thus much easier than
writing an Eulerian one. But two-phase flow experiments 2.1. A Kinetic Model
typically involve 106—1010 particles and it is of course

In the kinetic approach, the particles are characterizedimpossible to compute so many particles. Furthermore, we
by their position in the phase space, namely by their posi-are not interested in the precise locations of particles but in
tion x, their velocity v, and their radius r. We do not takeaverage behavior. The usual trick is to consider numerical
the temperature into account here. The correspondingparticles which represent a group of particles with the same
probability density function (pdf) is then a function f 5velocity and the same radius at a given location of the
f (x, v, r, t) and the spray equation is written (see [1, 6]):phase space. Provided that the velocity and droplet distri-

butions of the cloud are smooth enough, this method is
­t f 1 =x ? ( fv) 1 =v ? ( fb) 1 ­r( fR) 5 Q( f, f ). (2.1)efficient and enables the computation of Lagrangian mod-

els. However, such computations still require much CPU
time due to the great number of numerical particles that The term b 5 b(x, v, r, t) is the acceleration of a droplet
should be computed in order to obtain meaningful results. with velocity v and radius r, at time t. The term R is the
Furthermore, in the case of the dispersion of a cloud by a regression velocity of the radius of the droplets:
isotropic and homogeneous turbulent gas flow field, [2]
proves that the velocity distribution of a class of particles

R 5
dr
dt

.of given radius and at a given location of the physical space
asymptotically tends to a Gaussian distribution. Assuming
that the last velocity distribution functions are Gaussian,

This term takes into account the vaporization of the drop-we introduce below a semi-fluid model where each class
lets. There exist many models accounting for this phenome-of droplets with a given radius and found at a given location
non. Here, for the sake of simpliciy, we shall assume thatof the phase space is characterized by its number density,
when a droplet vaporizes its radius obeys the so calledits mean velocity, and its mean quadratic velocity. The
d 2-law: r 2(t) 5 r 2

0 2 Kt, where K is a positive constant (seesemi-fluid model is derived by taking the first three mo-
[1]). This means that R 5 2K/2r. When using this simplements of the spray equation relative to the velocity vari-
model, one assumes that the temperature inside the dropletable. The semi-fluid model consists of three equations,
is constant and uniform and that the surrounding gas iswritten in a space with dimension 4 (the three position
still. These are reliable assumptions when there exists avariables and the radius), while the spray equation is a
certain equilibrium between the vaporizing droplet andsingle equation written in a phase space with dimension
the surrounding gas. These assumptions are not verified7. The semi-fluid description of the two-phase flow thus
in most practical cases but we may use the d 2-law when therequires many fewer degrees of freedom than the Lagran-
droplets are injected in a hot gas so that the temperaturegian description and we expect much more efficient com-
of the droplets reaches the boiling point in a short timeputer codes based on this model than on fully Lagrangian
compared to the time for the complete vaporization of themodels without sacrificing for a precise description of the
droplet. Hence, as a preliminary step toward more realisticbehavior of droplets.
models, we may omit the droplet temperature in the pdfWe introduce in this paper a numerical method for the
by assuming that this temperature equals the boiling tem-computation of our semi-fluid model. The method is in-
perature of the liquid inside the droplets. Finally, Q( f,spired by the kinetic schemes of Harten, Desphande, and
f ) is a nonlinear expression that takes into account thePerthame (see [3–5]) and relies on the spray equation.
collisions of particles and the break-up. In the sequel, weNevertheless the semi-fluid model is written in a space
consider dilute clouds of particles, so that we omit the termwith dimension 4 and we resort to a particle description
Q( f, f ) in (2.1). The spray equation reduces to the transportof the unknown functions rather than to a finite volume
equation in the phase space:approach as in the work of Perthame. The organization of

the paper is the following: Section 2 is devoted to the
­t f 1 =x ? ( fv) 1 =v ? ( fb) 1 ­r( fR) 5 0. (2.2)derivation of the semi-fluid model from the spray equation.

Section 3 deals with the discretization of the semi-fluid
model. A finite volume method for the computation of the The acceleration b of a droplet includes the drag force,

the acceleration of gravity, the added mass effect, the Bas-gas phase and the treatment of the interaction between
the gas and the liquid phase thanks to a particle in cell set term, .... In this study we shall only take into account
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the drag force and the gravity force, which are the two
­t E

v
E

r
f

4
3

fr 3rl F1, v,
v2

2G dv dr 1 =x

(2.6)
leading forces that act on droplets. The term b is thus

b 5 bs 1 g
?SE

v
E

r
fvf(v, r) dv drD 5

def
2[M, I, E](x, t),

where g is the acceleration of gravity and bs is the drag
acceleration. Here, for the sake of simplicity and without which yields the expressions
loss of generality in the sequel, we set g ; 0. Finally, we
model the drag acceleration by the Stokes drag force:

bs 5 2
9
2

eg

r 2rl
(v 2 ug) 5 2c(r)(v 2 ug) 5 2

C

r 2 (v 2 ug).

(2.3) 5
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2Kfrlr dr E
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f dv
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f (ug 2 v) dv
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r
2Kfrlr dr E
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f
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2
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c(r)
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frlr 3 dr E
v

f (ug 2 v) ? v dv.

Here, eg denotes the viscosity of the gas, rl is the mass
density of the liquid phase, and ug is the velocity of the
gas. We assume below that eg and rl are positive constants.
Hence, the action of the gas on the particles occurs through
the acceleration bs , which depends on ug . Furthermore,
when the velocities of the gas and of the droplets are large,

(2.7)

the effects of gravity may be neglected and we set g 5 0
in the sequel. Finally, note that 1/c(r) is the characteristic

2.2. Turbulence Modelingrelaxation time for a droplet with radius r to be captured
by the gas flow, i.e., the time after which the velocity of Let us now consider the modeling of the turbulence in
the droplet equals that of the surrounding gas. the two-phase flow. The equations written above indeed

The gas flow field is modeled by the Navier–Stokes equa- allow direct simulation of the turbulent two-phase flow.
tions: Nevertheless, direct simulation requires that the mesh size

be much smaller than the size of the smallest eddies. But
since eddies are expected in the wake of droplets, the mesh
size should be much smaller than the droplet radius in
order to perform direct simulation of the two-phase flow.5

­t(rg) 1 =x ? (rgug) 5 M

­t(rgug) 1 =x ? (rgug ^ ug 1 pgI) 2 =x ? (s9g) 5 I

­t(rgeg) 1 =x ? (rgegug 1 pgug) 2 =x ? (s9g ? ug)

2 =x ? (kg =x«g) 5 E.

(2.4) Hence, practical computations using direct simulation
would only allow very few droplets and we need turbu-
lence modeling.

The modeling of turbulence in two-phase flows is still an
open problem and we expect that the presence of dropletsThe functions pg , «g , kg and s9g are respectively the pres-
perturbs Kolmogorov’s energy cascade. Here, we distin-sure, the specific internal energy, the gas thermal conduc-
guish two scales for the turbulent eddies. On the one hand,tivity, and the viscous stress tensor of the gas. Their expres-
in the ‘‘macroscopic scale,’’ we consider that the eddiessions are given by the formulae
are big enough so that the turbulence phenomenon may
be included in the description of the mean velocity of the
gas. Hence, we may write here the velocity of the gas as«g 5 eg 2

u2
g

2 the sum (see [7, 8])

pg 5 (c 2 1)rg«g 5 (c 2 1)rg Seg 2
u2

g

2 D (2.5) ug 5 ug 1 ũ, (2.8)

s9g 5 eg(=xug 1 =xuT
g ) 1 l(=x ? ug)I, where ug is mean velocity in the statistical sense and ũ is

modeled by a centered random fluctuation. The value of
ũ depends on the turbulent kinetic energy of the gas andwhere c is the ratio of specific heats, eg is the gas viscosity,

and l is the bulk viscosity. acts on the droplets during the turbulence correlation time
t. When ũ is modelled by random values, the total impulseThe exchange terms M, I, and E in (2.4) are such that

the total mass, momentum and energy of the system are of the gas flow is a priori not preserved in an explicit
approach. Hence, here, more realistic modelings of theconserved; that is,
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turbulent coupled two-phase fluid flow would be necessary. tation shows that the right hand side of Eq. (2.4) is now
the following:However, this is beyond the scope of this paper.

Here, and in the following, we want to concentrate on
the modeling of the effect of the small eddies. At a ‘‘micro-
scopic’’ scale, where we assume small values of the turbu-  M(x, t) 5 E

r
2Kfrlr dr E

v
f dv

lent correlation time of the eddies, the effect of the small
eddies on the droplets is comparable to grazing collisions.

I(x, t) 5 E
r
2Kfrlr dr E

v
fv dvHere, following [2], we assume homogeneous isotropic tur-

bulence in the gas phase, characterized by the microscopic
2 E

r
c(r)

4
3

frlr 3 dr E
v

f (ug 2 v) dvspecific turbulent energy K and the correlation time td .
Assuming that td is small in comparison with the character-

 (2.11)istic time scales of the flow, it is proved in [9, 10, 2] that
E(x, t) 5 E

r
2Kfrlr dr E

v
f

v2

2
dvthe spray equation (2.2) may be replaced by the following:

­t f 1 =x ? ( fv) 1 =v ? ( fb) 1 ­r( fR) 2 =v ? (D=vf ) 5 0. 2 2 E
r
c(r)

4
3

frlr 3 dr E
v

f (ug 2 v) ? v dv

(2.9)
2 d E

r
D(r)

4
3

frlr 3 dr E
v

f dv.Here, the expression of the diffusion coefficient is obtained
by studying the dispersion in an homogeneous gas flow of a

Remark 2.1. The equation (2.11) gives explicitly thecloud of particles from a statistical point of view. Moreover,
expression of the exchange terms between the two phasesone obtains exactly the Fokker–Planck equation above in
so that a complete description of the two-phase fluid flowthe limit where td is small compared to the characteristic
model is available. However, for the numerical implemen-time scales of the flow, in particular in the limit where td
tation of the model we only need Eq. (2.6), which definesis small compared to the characteristic time scale 1/c(r)
the exchange terms.of the motion of a droplet in the mean gas flow (i.e.,

c(r)td ! 1). When the latter condition is not satisfied, one
should consider more general diffusion terms that involve 2.3. The Semi-fluid Model
more derivatives of f (see [2, 10]). However, we neglect

This subsection is devoted to the derivation of the semi-these correction terms in this study and model the dis-
fluid model. For this purpose, we must study the velocitypersed phase by using the Fokker–Planck equation (2.9)
distribution function of droplets located in a small region ofabove whatever the value of c(r)td (see also Remark 3.10 of
the physical space. More precisely we prove the followingSection 3) . Finally, following [2], the diffusion coefficient is

written
PROPOSITION 2.2. Let f 0 be Gaussian in (x, v). Let f

denote the solution of the uncoupled spray equation (2.9)
D ; D(r, K, td) 5

2
d

K

td
[e2c(r)td 2 1 1 c(r)td], (2.10) with initial data f 0, where we consider that the gas flow data

are uniform. Then, for any fixed t $ 0 and for any fixed x
and r, the function v R f (x, v, r, t) is a Gaussian function.

where d is the dimension of the physical space. Note
that when c(r)td @ 1 (i.e., r tends to 0), we have D Q Proof of Proposition 2.2. We first prove the following
2c(r)K /d, whereas when c(r)td ! 1 we have D Q preliminary result.
c2(r)K td/d.

The gas phase equations should also be modified: first, PROPOSITION 2.3. Let f 0 be given. Let uniform gas data
we have to include a turbulence model that allows one to be given. Then the solution f of the Fokker–Planck equation
estimate the macroscopic and microscopic specific turbu- (2.9), with initial datum f 0 may be written
lent energies and correlation times. Obviously the effect
of the droplets should also be taken into account and much
effort should be geared to the derivation of two-phase f (x, v, r, t) 5 St f 0 5

1
u Jr(t)u

(2.12)
turbulence models in the future. However, this is beyond
the scope of this study. For the numerical experiment we E

x9
E

v9
GR2(X2 2 x9, V2 2 v9, t) f 0(x9, v9, R2) dx9 dv9use ad hoc laws.

Next the production terms in the right hand side of
the Navier–Stokes equations should be modified since the
spray equation itself was modified: straightforward compu- where (X2, V2, R2) are the characteristics of Definition 3.5
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and Lemma 3.6 below. The factor 1/u Jr(t)u is the Jacobian model below for the system, which is done here in the case
where the small scale turbulent flow field is isotropic. In­(X2, V2, R2)(t)/­(x, v, r) and we have
applications where the turbulent gas flow field is far from
isotropic, more sophisticated semi-fluid models should be

Gr(x, v, t) 5
1

(2f)dDd/2
r (t)

exp(2(ar(t)x2
considered. One will finally observe that in the case of a
monodisperse spray, an Eulerian description of the two-

1 2hr(t)x ? v 1 br(t)v2)/2Dr(t)), phase flow is recovered.

Remark 2.5. The assumption 2.4 does not mean that
where the expressions of ar(t), br(t), hr(t) and Dr(t) are given we restrict ourselves to the modeling of two-phase fluid
in Eq. (A.2) of Appendix A. flows such that the velocity profile of the spray, taken for

instance in a section normal to the flow direction, is aProof of 2.3. The proof is given in Appendix A.
Gaussian function. Such velocity distributions may be ob-

Let us return to the proof of Proposition 2.2. As stated in served when sedimentation of solid particles in gas or water
Property 3.7 below, the characteristics (X2, V2) are linear is studied. We expect, however, very different velocity dis-
functions of (x, v). Hence, if f 0 satisfies the assumptions tributions for the dispersed phase even for simple flows
of Proposition 2.2, then, according to Eq. (2.12), for any such as two-phase Poiseuille flow. Hypothesis 2.4 should
fixed t $ 0 and for any fixed x and r, the function v R f (x, be understood at a scale that is much smaller than the
v, r, t) may be written in terms of the convolution with characteristic length scale. We believe that this assumption
respect to v of two Gaussian functions of the variable v is analogous to the one which allows the Euler system of
and is thus a Gaussian function of the variable v. This gas dynamics for large Knudsen numbers to be derived
concludes the proof of Proposition 2.2. from the Boltzmann equation: for large Knudsen numbers,

the velocity distribution function of the gas molecules isNow, in view of Proposition 2.2, we make the following
very close to a Gaussian function but this does not meanassumption for the coupled two-phase fluid flow system:
that the macroscopic velocity profiles are Gaussian.

Hypothesis 2.4 (Modeling hypothesis). Consider the
Now, coming back to the modeling hypothesis, one ob-solution f of Eq. (2.9) coupled to the gas flow Eqs. (2.4)

serves that a Gaussian function is uniquely determined bywith initial datum f 0. We assume that at any point (x,
its first three moments: indeed, if v R J(v) denotes ar) and time t, the velocity distribution v R f (x, v, r, t)
Gaussian function, J is uniquely determined by the follow-is Gaussian.
ing three quantities:

Note that this hypothesis is stronger than the result of
Proposition 2.2. Indeed, in Proposition 2.2, where the gas

g 5 E
v

J(v) dv, gu 5 E
v

J(v)v dv, ge 5 E
v

J(v)
v2

2
dv.

flow data are given, the mean velocity and kinetic energy
of the droplets are imposed by the gas data so that here
the spray may be described by only one unknown, the Then, if d 5 1, 2, 3 is the dimension of the physical space,
density. However, in the case of the kinetic modeling of J is written in terms of g, u, and e as follows:
the coupled system, new degrees of freedom are obtained
thanks to the existence of the three exchange terms. Hence,

J(v) ; J(v; g, u, e) 5
g

[(4/d)f(e 2 u2/2)]d/2

(2.13)
one may introduce three unknowns for the spray indepen-
dently from the unknowns of the gas flow. This is the
reason why, in Hypothesis 2.4, we assume as in Proposition exp S2

(v 2 u)2

(4/d)(e 2 u2/2)D .
2.2 that the velocity distributions of the droplets are
Gaussian, but without any restriction on the possible mean

Under Hypothesis 2.4, the function f is thus characterizedvelocities and variances of these distributions. Conse-
by the following three moments:quently, it is a stronger assumption than the result of Prop-

osition 2.2 since we postulate here the shape of the velocity
distributions for the coupled sytem. A mathematical study,
involving appropriate scalings for the coupled problem,
would be necessary to justify on rigorous grounds this
modeling hypothesis, that is, to prove that Gaussian veloc- 3

g

gu

ge
4 (x, r, t) 53

4
3

frlr 3 Ev f(x, v, r, t) dv

4
3

frlr 3 Ev f(x, v, r, t)v dv

4
3

frlr 3 Ev f(x, v, r, t)
v2

2
dv
4 . (2.14)ity distributions are relevant for the description of the spray

by the semi-fluid model in the case of the coupled problem.
Thus, this hypothesis is essential from the mathematical

viewpoint since it allows the derivation of the semi-fluid
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Here, due to the factor Fdfrlr 3 in the above expression, the above. However, we shall use the following procedure
which allows the use of the semi-fluid model together withquantities (g, gu, ge) are the mass, impulse, and energy

densities of the spray at the point (x, r, t). Note that e the discretization of the spray unknowns: given an initial
probability density function f 0, we shall approximate f 0 byaccounts for the kinetic energy and for the turbulent kinetic

energy of the spray but is independent of the temperature a sum of functions fk , 1 # k # N, such that for each k,
each x, and each r, the function v R f 0

k(x, v, r) is Gaussian.of the liquid phase. To take into account the droplets’
temperature would require one to introduce another di- The probability density function f, solution of the spray

equation (2.9) with initial datum f 0, is then approximatedmension in the phase space.
We may now derive the semi-fluid model that character- by the sum f Q oN

k51 fk where, for 1 # k # N, the function
fk is the solution of (2.9), with initial datum f 0

k . For eachizes the evolution of the quantities g, gu, and ge by inte-
grating with respect to v the spray equation (2.9) against function fk we may define the quantities gk , uk , and ek

which each satisfy the semi-fluid model equation (2.15).the three quantities Fdfrlr 3, Fdfrlr 3v, and Fdfrlr 3v2/2. A
straightforward computation gives the following result: Finally, the problem consists in computing the unknowns

(rg , ug , eg)(x, t), solutions of Eqs. (2.4), (2.5), and (gp ,
LEMMA 2.6 (Semi-fluid Model). Consider the un- up , ep)(x, r, t) 5 oN

k51 (gk , uk , ek)(x, r, t), where each
knowns (rg , rg ug , rg eg ) for the gas and the unknown f for unknown (gk , uk , ek) is a solution of the semi-fluid system
the spray solutions of the coupled equations (2.4)–(2.9). (2.15), (2.16). Moreover, the exchange terms (2.7) are re-
Assume moreover that Hypothesis 2.4 holds. Then the new written in terms of (gk , uk , ek). The initial data are (r0

g ,
unknowns for the spray (g, u, e)(x, r, t), defined by (2.14), u0

g , e0
g)(x) and (g0

k , u0
k , e0

k)(x, r).
satisfy the following system of equations: As far as we know, such a semi-fluid model does not

exist in the literature. However, there already exist some
methods intermediate between a fully kinetic and an Eu-
lerian approach. For example, in the case of a polydisperse
spray, one can describe the dispersed phase thanks to a
set of Eulerian equations where each equation accounts
for particles of a given size. Our approach is different.
Here, we do not try to generalize the usual Eulerian model-
ing of the two-phase flows to the case of polydisperse phase.5

­t g 1 =x ? (gu) 2 ­r SK
2r

gD5 2
3K
2r 2 g

­t (gu) 1 =x ? (gu ^ u) 1 =xq 2 ­r SK
2r

guD
5 2

3K
2r 2 gu 2 cg(u 2 ug)

­t(ge) 1 =x ? (geu 1 qu) 2 ­r SK
2r

geD
5 2

3K
2r 2 ge 2 2cg Se 2

u ? ug

2
2 d

D
2cD.

(2.15)
On the contrary, we are interested in a way of deriving a
semi-fluid model from the most general fully kinetic model.

In the following two sections, we successively write the
numerical scheme for the spray and for the gas. Moreover,
we shall see that the numerical scheme for the spray intro-
duced in the following section may be regarded either as
a numerical scheme for the kinetic equation (2.9) or a
numerical scheme for the semi-fluid equation (2.15) forHere, d is the dimension of the physical space and q is the
the spray provided we assume that this description is closepressure-like term defined by
to the kinetic one (see the remark above). Here, the mathe-
matical considerations of Proposition 2.2 allow us to choose
a discretization of the spray consistent with the fact thatq(x, r, t) 5

d
2

g Se 2
u2

2 D. (2.16)
we want to take into account the diffusion term in the
kinetic equation (2.9).

Note that if we integrate the right hand side of (2.15)
with respect to the variable r, we find the opposite of the 3. A KINETIC SCHEME FOR THE SPRAY
exchange terms (M, I, E) defined in Eq. (2.7). That is, the
exchange terms may be written explicitly in terms of the Let Dt denote the time-step and let t n 5 n Dt denote the

time levels. During this section we assume that the gassemi-fluid unknowns defined in (2.14). System (2.15) may
thus be viewed as a description of the dispersed phase flow is given and constant in each cell on the interval of

time [t n, t n11]. The mass density field, velocity, and specificintermediate between a fluid model, where the unknowns
would depend only on (x, t) and the kinetic representation total energy field of the gas phase are respectively denoted

by rn
g , un

g , and en
g .by the pdf f. This is why we call it a semi-fluid model.

Consider now a general spray whose density function is Let us now consider the spray. We denote the initial
probability density function by f 0 and, for computationalf. A priori, the function f does not satisfy Hypothesis 2.4

and we may not use directly the semi-fluid model derived purposes, we wish to approximate f 0 by Gaussian velocity
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distribution functions. We may use different methods to (gk , gkuk , gkek)(x, r) 5 (Gk , GkUk , GkEk)j(x, xk, mk) ^ d(r 2 rk)
perform this approximation. First, the finite volume

(3.2)method consists in defining a grid on the reduced phase
space V 3 (Rr)1 and, for each cell of the grid, to approxi-

of each function fk with respect to v. Hence the state ofmate the restriction of f0 to the cell by a Gaussian velocity
the spray is also represented by the functiondistribution function. The parameters that characterize the

Gaussian function are constant in each cell. This method
allows the velocity distribution to vary as a function of the (gp , gpup , gpep)(x, r) 5 ON

k51
(gk , gkuk , gkek)(x, r)

position x in the physical space or of the radius of the
particles. Nevertheless, the reduced phase space V 3 (Rr)1

has dimension 4 and the finite volume approach is very 5 ON
k51

(Gk , GkUk , GkEk)j(x; xk , mk)
expensive and requires many degrees of freedom. (Note
that if we take into account the temperature of the droplets ^ d(r 2 rk). (3.3)
in the kinetic model, the dimension of the reduced phase
space becomes 5 so that this dimension is always at least However, the numerical particle (3.1) or equivalently
equal to 4.) A more efficient method by which to approxi- (3.2) is characterized by the six quantities
mate real-valued functions defined on spaces with dimen-
sion greater or equal to 4 is the particle approximation. (Gk , Uk , Ek , xk , mk , rk) (3.4)
Here the initial datum f0 is decomposed into the sum of a
finite number of functions with a simple shape, the so-

and we shall denote a numerical particle by this vector
called numerical particles. Many numerical particles may

in the sequel. The numerical particles are indexed by 1 #
be considered. It turns out, however, that in the case of

k # N.
our model, the most convenient numerical particles have

Now our problem is the following: given the state of the
the form

dispersed phase at time t n in the form of the sum of numeri-
cal particles each represented by the vector (3.4), and given
the gas flow, how to define the new state of the dispersedfk(x, v, r) 5

1
Fdfrlr 3

k
j(x; xk , mk)J(v; Gk , Uk , Ek) ^ d(r 2 rk),

phase, at time t n11.
Recalling that the semi-fluid system (2.15) is linear we(3.1)

may treat the numerical particles separately. Next, the
semi-fluid model is derived from the kinetic equation (2.9)

where we omit the time-dependence and where v R J(v;
so that, inspired by the ideas of Harten, Deshpande, and

Gk , Uk , Ek) is the Gaussian function whose first three
Perthame (see [3–5]), we introduce the following kinetic

moments with respect to v are respectively Gk , GkUk , and
scheme for each numerical particle (Gk , Uk, Ek , xk , mk ,

Gk2Ek and where x R j(x; xk , mk) is a Gaussian function,
rk)(t):

centered in xk , such that mk 5 ex j(x, xk , mk)x2 dx, and
with mass unity. The numerical particles thus occupy posi- DEFINITION 3.1 (A Kinetic Scheme for the Spray). Let
tions around xk within a range of typical size Sk 5 the data of the gas flow at time t n be given. Let (Gn

k ,
Ïmk 2 (xk)2. Since in our numerical method a numerical Un

k , E n
k , xn

k , mn
k , r n

k) denote a numerical particle at time t n.
particle represents a group of particles and since the flow Then we define the numerical particle (Gn11

k , Un11
k , E n11

k ,
is turbulent, the size of a numerical particle cannot be xn11

k , mn11
k , r n11

k ) thanks to the following algorithm con-
constant and it is necessary to introduce the variable Sk , sisting of the following three steps:
or equivalently mk (see also Remark 3.2 below). Moreover,

(a) Setthis variable is used in the coupling of the two phases in
the numerical method since one must know here the posi-
tion of the physical particles (see Section 4.2). Finally, d f n

k(x, v, r) 5
1

Fdfrl(r n
k)3 j(x; xn

k , mn
k)J(v; Gn

k , Un
k , En

k) ^ d(r 2 r n
k),

denotes Dirac’s delta function. Note that the use of a
Gaussian velocity distibution function is guided by the as-

where J is defined in Eq. (2.13).ymptotic behavior of the solutions of the spray equation
(2.9), while the choice of a Gaussian function for the x distri- (b) Calculate the solution fk of the Fokker–Planck
bution of the numerical particle is important for computa- equation (2.9) for t $ t n with initial data as f n

k ,
tional purposes.

Here f 5 oN
k fk thus represents the state of the spray.

However, thanks to the modeling hypothesis 2.4, the spray H­t fk 1 =x ? ( fkv) 1 =v ? ( fkb) 1 ­r( fkR) 2 =v ? (D=v fk) 5 0

fk(x, v, r, t n) 5 f n
k(x, v, r),is equivalently defined by the moments
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where b 5 (v 2 ug(xn
k , t n)) and D 5 D(r, K (xn

k , t n), In the case of a spray the relaxation to a Gaussian veloc-
ity distribution function is caused by the diffusion termtd(xn

k , t n)).
=v ? (D=v f ) in the spray equation (2.9) and the characteris-(c) Set (Gn11

k , Un11
k , 2E n11

k , xn11
k , mn11

k , r n11
k ) 5

tic time of this relaxation may be larger than the time stepM ( fk(Dt)), where M is a projector that preserves the first
of the numerical method. However, this is not a restrictionthree moments as well as the center of mass, the inertial
for the numerical method. Indeed one observes here thatmomentum, and the DeBroukier radius;3 that is
the particular shape of the position and velocity distribu-
tions used for the numerical particles has no influence on
the results of the kinetic scheme (see Theorem 3.4 above)
nor on the coupling between the two phases. This is due
to the fact that here the particles do not interact, so that
the characteristic time of relaxation of the spray towards1

Gn11
k

Gn11
k Un11

k

Gn11
k E n11

k

Gn11
k xn11

k

Gn11
k mn11

k

Gn11
k r n11

k

25 E
x
E

v
E

r

4
3

frlr 31
1

v

v2

2

x

x2

r

2 fk(Dt) dx dv dr. a Gaussian distribution is only governed by the characteris-
tic of the gas, acting as an exterior force field.

We can now write the main result of this section:

THEOREM 3.4 (Solution of the Kinetic Scheme). Let
Remark 3.2. The discretization (3.3) of (gp , gpup , G (x, v, r, t) be the elementary solution of Eq. (2.9) for the

gpep)(x, r, t) is similar to that used in the SPH method [11, spray and let
12]. Indeed, in the SPH method for the treatment of gas
dynamics as well as in our case for the treatment of the
dispersed phase, the discretization consists in dividing the [s 2

x , 2 s 2
xv , s 2

v](t; r) 5 E
x
E

v
[x2, x ? v, v2] G (x, v, r, t) dx dv

system into numerical particles having a given shape. In
the SPH method, a numerical particle represents a particle
of fluid. In our case, it represents a group of droplets.

be the second order moments of G. Then, applying the kineticIn both cases, the numerical particles follow the character-
scheme to the numerical particle (Gn

k , Gn
kUn

k , Gn
kEn

k , xn
k ,istics, which ensures a good treatment of the convection

mn
k , r n

k) at time t n, we have the expression for the numericalterms. Then, in order to describe the pressure terms in
particle at time t . t n:the SPH method, the numerical particles interact de-

pending on their position, size, and shape. In our case,
the numerical particles (i.e., the droplets) do not interact  Gk(t) 5 Gn

kc 3(t 2 t n; r n
k)

with one another but interact with the gas flow. Hence,
(GkUk)(t) 5 Gn

kc 3(t 2 t n; r n
k)V(t; Un

k , r n
k , t n)here, the size and shape of a numerical particle allow

us to take into account the effect of the gaseous turbu-
(GkEk) 5 Gn

kc 3(t 2 t n; r n
k)lence on the spray.

Remark 3.3. Note that the pdf obtained in step (a) 3 FV 2(t; Un
k , r n

k , t n)
2

1 h2
1(t 2 t n; r n

k)
is projected onto a Gaussian velocity distribution function,
mimicking what is done in usual kinetic schemes applied
to the Euler system of gas dynamics. In the gas dynamics S«n

k 1
s 2

v(t 2 t n; r n
k)

2 DG
case, relaxation to a Gaussian velocity distribution func-
tion is caused by collisions between molecules and the xk(t) 5 X(t; xn

k , Un
k , r n

k , t n)
characteristic time of this relaxation process depends on

mk(t) 5 X 2(t; xn
k , Un

k , r n
k , t n) 1 (S n

k)2 1 a2
1(t 2 t n; r n

k)2«n
kthe Knudsen number: the relaxation time is very small

in the case of gases at atmospheric pressure and much 1 s 2
x(t 2 t n; r n

k) 2 2a1(t 2 t n; r n
k)s 2

xv(t 2 t n; r n
k)

smaller than the time step used for numerical calculations.
1 a2

1(t 2 t n; r n
k)s 2

v(t 2 t n, r n
k)The projection step is thus justified on physical grounds.

rk(t) 5 R(t; r n
k , t n) 5 c(t 2 t n; r n

k)r n
k .

(3.5)

3 The DeBroukier radius rDB of the distribution f(r) is the mean radius
calculated with respect to the mass of the particles, that is:

Here, (X, V, R) are the characteristics introduced in Defini-
rDB(f) 5

E
r
Fdfr3f(r)r dr

E
r
Fdfr3f(r) dr

5
E

r
r4f(r) dr

E
r
r3f(r) dr

. tion 3.5 below with ug 5 ug(xn
k , t n). The functions t R

c(t 2 t n; r n
k), t R a1(t 2 t n; r n

k) and t R h1(t 2 t n; r n
k) are
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the coefficients of the characteristics defined in Eq. (3.9),
and we have

«n
k 5 E n

k 2
(Un

k)2

2
(3.6) 5

X(t; x, v, r, s) 5 x 1
r 2

C 1 K
(1 2 c212C /K(t 2 s; r))v

1
C

C 1 K Ft 2
r2

C 1 K
(1 2 c212C /K(t 2 s; r))G ug

V(t; x, v, r, s) ; V(t; v, r, s) 5 c2C/K(t 2 s; r)v

1
C

C 1 K
[1 2 c 2C /K(t 2 s; r)] ug

R(t; x, v, r, s) ; R(t; r, s) 5 Ï(r2 2 K(t 2 s))1 5 c(t 2 s; r)r,

(S n
k)2 5 mn

k 2 (xn
k)2.

Finally, the second order moments of G are explicitly written
in terms of the coefficients of G (see Eq. (A.2) of Appen-
dix A),

where we have x1 5 max(x, 0) and c(t 2 s; r) 5 R(t; r, s)/r.5
s 2

v(t 2 t n; r n
k) 5 darn

k
(t 2 t n)

2s 2
xv(t 2 t n; r n

k) 5 2dhrn
k
(t 2 t n)

s 2
x(t 2 t n; r n

k) 5 dbrn
k
(t 2 t n),

(3.7) Proof. It suffices to integrate successively R, V, and X
in the ODE (3.8). Each integration involves only one un-
known.

We shall write in the sequel the following expressionswhere d is the dimension of the physical space.
of the three functions X, V, and R,

Note that here the function c(t 2 t n, r n
k) denotes the

ratio between the new radius rk(t) at time t of a droplet
and the initial radius r n

k at time t n. To prove theorem 3.4 5
X(t; x, v, r, s) 5 x 1 a1(t 2 s; r)v 1 a2(t 2 s; r)

V(t; v, r, s) 5 h1(t 2 s; r)v 1 h2(t 2 s; r)

R(t; r, s) 5 c(t 2 s; r)r,

(3.9)we first define the characteristics associated with the spray
equation (2.9), without the diffusion terms modeling the
effects of the gas turbulence:

with obvious notations for ai , hi , and c. One must re-DEFINITION 3.5 (Characteristics). The characteristics
mark here:(X, V, R)(t; x, v, r, s) are defined as the solution of the

following system of ordinary differential equations: Property 3.7. The characteristics (X, V)(t; x, v, r, s)
are linear functions of the initial position (x, v).

Let now M(x, v, r) and f (x, v, r, t) be any functions and
define the moments of f against M at time t as M f (t) 5
ex ev er M f dx dv dr. When f 5 St f0 is the solution of the5

dX
dt

5 V

dV
dt

5 2c(t)(V 2 ug) 5 2
C

R2 (V 2 ug)

dR
dt

5 2
K
2R

5
X(s; x, v, r, s) 5 x

V(s; x, v, r, s) 5 v

R(s; x, v, r, s) 5 r.

kinetic equation (2.9) with initial datum f0 , a simple corol-
lary of Proposition 2.3 is the following:

COROLLARY 3.8 (Moments). Given a function (x, v,
r) R M(x, v, r), the moments at time t of St f0 against M

(3.8) may be written as follows:

Note that when t . s, the characteristics are the solution ( MStf0)(t) 5 E
x9
E

v9
dx9 dv9 E

x
E

v
E

r
f0(x9, v9, r)Gr(x, v, t)

of a Cauchy problem with initial data, whereas when t , s,
the characteristicsare thesolution ofa Cauchyproblem with 3 M(X(t; x 1 x9, v 1 v9, r, 0), (3.10)
final data. Furthermore the function t R (X, V, R)(t; x, v, r,

V(t; v 1 v9, r, 0), R(t; r, 0)) dx dv dr.0) is the trajectory of a single particle, initially located at the
position(x, v, r) in thephasespace. For thesake ofsimplicity, We are now ready to prove Theorem 3.4:
we denote in the sequel (X1, V1, R1) (t) 5 (X, V, R)(t; x, v,
r, 0) the direct characteristics, and (X2, V2, R2)(t) 5 (X, V, Proof of Theorem 3.4 (Solution of the Kinetic
R)(0; x, v, r, t) the reverse characteristics. These functions Scheme). Consider the following numerical particle:
may be computed explicitly:

f n
k(x, v, r) 5

1
Fdfrl(r n

k)3 j(x; xn
k , mn

k)J(v; Gn
k , Un

k , E n
k) ^ d(r 2 r n

k).LEMMA 3.6 (Expression of the Characteristics). Let ug ,
a constant, be given. The characteristics, solution of the
system of ODEs (3.8), are written (3.11)
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Then define M 5 (Mj)j51,5 [ R5 as the vector M 5 Fdfrlr 3(1, in terms of the second moments of G : s 2
x 2 2a1s

2
xv 1

a2
1s

2
v . Because G is Gaussian in (x, v), straightforwardv, v2/2, x, x2, r) and let M denote the operator defined in

Eq. (3.10). From the Definition 3.1 of the kinetic scheme, calculations allow us to rewrite the second moments of G

as stated in (3.7). Finally, the contribution of the first termit is now clear that the kinetic scheme for the spray is
written in terms of St and M as of (3.13) in the second integral is the first term itself since

G has mass unity. Then, rewrite the first term of (3.13) as
(Gn11

k , Gn11
k Un11

k , Gn11
k E n11

k , Gn11
k xn11

k , Gn11
k mn11

k , Gn11
k r n11

k )
(x9 1 a1v9 1 a2)2

5 MSDt f n
k

5 (xn
k 1 a1Un

k 1 a2)2 1 [(x9 2 xn
k)2 1 a2

1(v9 2 Un
k)2]

(3.14)and we know, thanks to Corollary 3.8 and the expression 1 2a1(x9 2 xn
k)(v9 2 Un

k)
(3.11) of f n

k , that we have
1 2(xn

k 1 a1Un
k 1 a2)[(x9 2 xn

k) 1 a1(v9 2 Un
k)]

MSDt f n
k 5

1
Fdfrl(r n

k)3 and calculate its contribution in Eq. (3.12). Here, we
know that

3 E
v9
E

x9
j(x9; xn

k , mn
k)J(v9; Gn

k , Un
k , E n

k) dx9 dv9

E
x9
E

v9
j(x9; xn

k , mn
k)J(v9; Gn

k , Un
k , E n

k)
3 E

x
E

v
Grn

k
(x, v, Dt)

F1, v9,
v92

2
, x9, x29, x9 ? v9G dx dv (3.15)3 M(X(t n11; x 1 x9, v 1 v9, r n

k , t n),

V(t n11; v 1 v9, r n
k , t n), R(t n11; r n

k , t n)) dx dv. 5 [Gn
k , Un

k , E n
k , xn

k , mn
k , xn

k ? vn
k],

We have thus to compute five moments to get the expres- so that the contribution of the last two terms of (3.14) in
sion in Theorem 3.4. We compute only the expression of Eq. (3.12) is zero. The first term is independent of (x9, v9)
the fifth moment (Gn11

k mn11
k ), corresponding to M5(x, v, and is exactly X2(t n11; xn

k , Un
k , r n

k , t n), so that its contribution
r) 5 Fdfrlr 3x2, the computation of the four other moments is Gn

kX2(t n11; xn
k , Un

k , r n
k , t n). Finally, thanks to the definition

being analogous: of S n
k and «n

k given in Theorem 3.4, the contribution of
the terms of Eq. (3.14) is Gn

k(X2(t n11; xn
k , Un

k , r n
k , t n) 1

(S n
k)2 1 a2

12«n
k).(Gn11

k mn11
k ) 5 SR(t n11; r n

k , t n)
r n

k
D3

Summing the contributions of (3.13) and (3.14) in (3.12)
gives finally the expression of (Gkmk)(t), that is the result

3 E
x9
E

v9
j(x9; xn

k , mn
k)J(v9; Gn

k , Un
k , E n

k) dx9 dv9

(3.12)
(3.5) stated in Theorem 3.4. This concludes the proof of
Theorem 3.4.

3 E
x
E

v
Grn

k
(x, v, Dt)X 2(t n11; x 1 x9,

We have the corollary:

v 1 v9, r n
k , t n) dx dv. COLLARY 3.9. The nonconservative unknowns (Gn11

k ,
Un11

k , xn11
k , r n11

k ) are the solutions at time t n11 of the system
of ODEsFollowing Eq. (3.9), we shall write c(t n 2 t n; r n

k ) 5 R(t n11;
r n

k , t n)/r n
k from here on. Next, from Eq. (3.9), we know

that the characteristic X writes in the form X(t; x 1 x9,
v 1 v9, r n

k , t n) 5 x 1 x9 1 a1(t 2 t nr n
k)(v 1 v9) 1 a2(t 2

t nr n
k), so that we may write in Eq. (3.12)

X2(t n11; x 1 x9, v 1 v9, r n
k , t n)

5 (x9 1 a1v9 1 a2)2 1 (x2 1 2a1x ? v 1 a2
1v2) (3.13) 5

dGk

dt
5 22fKrk

dUk

dt
5 2ck(Uk 2 (ug)n

k)

d«k

dt
5 22ck S«k 2 d

Dk

2ck
D

dxk

dt
5 Uk

drk

dt
5 2

K
2rk

5
Gk(t n) 5 Gn

k

Uk(t n) 5 Un
k

«k(t n) 5 «n
k

xk(t n) 5 xn
k

rk(t n) 5 r n
k

(3.16)
1 (x9 1 a1v9 1 a2)(x 1 a1v).

Then we integrate the last expression against ex ev
Grn

k
dx dv. First, the contribution of the last term is zero

since the function (x, v) R Grn
k
(x, v) is centered in x and

v. The contribution of the second term is written exactly
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where ck 5 c(rk(t)) is the drag force coefficient defined in ug and dD/(2c), respectively, when t becomes large. This
result is consistent with the semi-fluid system (2.15) for(2.3) and Dk 5 D(rk(t), K (xn

k , t n), td(x n
k , t n)) is the diffusion

coefficient of Eq. (2.9) defined in (2.10). Finally, the gas the spray. Note also that when K 5 0, the limit dD/(2c)
of «k(t) as t tends to infinity is a constant. This correspondsvelocity is written here as (ug)n

k 5 ug(x n
k , t n).

to a ‘‘thermalization’’ of the cloud of particles.
Proof of Corollary 3.9. According to Theorem 3.4, the

quantities Gn11
k , Un11

k , «n11
k , xn11

k , and r n11
k are respectively

Remark 3.10. Notice that this value dD/(2c(r)) is al-obtained as the values of the following functions at time
ways less than the (microscopic) turbulent kinetic energyt 5 t n11:
of the gas. Indeed, the diffusion term D accounts for the
dispersion of particles. On the one hand, when c(r)td @ 1,
that is when the droplets may be considered as passive
scalars, we then find dD/(2c(r)) 5 K, that is the agitation
of the particles equals that of the gas. On the other
hand, when c(r)td ! 1, we have dD/(2c(r)) 5 K (c(r)td/
2), which means that only a fraction of the turbulent5

Gk(t) 5
4
3

frlr 3
k(t)

Uk(t) 5 V(t; Un
k , r n

k , t n)

«k(t) 5 h2
1(t; r n

k , t n) S«n
k 1

s 2
v(t; r n

k , t n)
2 D

xk(t) 5 X(t; xn
k , Un

k , r n
k , t n)

rk(t) 5 R(t; r n
k , t n).

(3.17)
kinetic energy of the gas participates to the dispersion
of the droplets.

*Remark 3.11. Theorem 3.4 and Corollary 3.9 are avail-
able in both the laminar and turbulent cases, as well as in
the burning and non-burning cases. In the laminar case,Taking the derivatives of the above expressions with re-
the expressions are simply rewritten with D 5 0. In thespect to t shows that the functions Gk , Uk , xk , and rk satisfy
case of non-burning droplets, that is, in the limit wherethe differential equations given in Corollary 3.9. The initial
K tends to zero, we simply write K 5 0, c(t; r n

k , s) 5 1,data proposed in this lemma are of course correct and the
h1(t 2 s; r n

k) 5 e2c(t2s), and a1(t 2 s; r n
k) 5 (1 2 e2c(t2s))/cdifferential equations for Gk(t), Uk(t), xk(t), and rk(t) are

in all the expressions. Hence, in the case of non-burningobtained from straightforward computations. Let us now
droplets, that is, when K 5 0, the characteristics are simplyconsider the kinetic energy «k(t). We compute
given by the following expressions:

d«k

dt
5 2

(dh1/dt)
h1

«k(t) 1 h2
1

ds 2
v

dt
.

But we know that s 2
v(t) 5 darn

k
(t 2 t n) 5 d et

tn Dk(s)/
h2

1(s) ds so that (ds 2
v/dt) 5 dDk(t)/h2

1(t). Now, from the 5X(t; x, v, r, s) 5 x 1
1 2 e2c(t2s)

c
v 1 S(t 2 s) 2

1 2 e2c(t2s)

c D ug

V(t; v, r, s) 5 e2c(t2s)v 1 (1 2 e2c(t2s))ug

R(t; r, s) 5 r.

definition of h1 5 ­vV(t; v) and the regularity of the charac-
teristic V with respect to t and v, we may write (dh1/
dt) 5 ­t(­vV(t; v)) 5 ­v(­tV(t; v)). Thanks to Definition 3.5

(3.18)

of the characteristics, this gives (dh1/dt) 5 ­v[2ck(t)(V(t;
v) 2 (ug)n

k)] 5 2ck(t)h1 because ck is independent of v.
This allows us to rewrite d«k/dt as in Corollary 3.9. This

4. A FINITE VOLUME SCHEME FOR THE
concludes the proof of Corollary 3.9.

GAS UNKNOWNS
Note that the expressions of the unknowns (xk(t), Uk(t),

4.1. The Gas Schemerk(t)) are the characteristics introduced in Definition 3.5.
This means that the position, velocity, and radius of a This subsection is devoted to the construction of a nu-
numerical particle behave like those of a physical particle. merical scheme for approximating the quantities relative
The same result would be obtained with more general to the gas flow. The scheme below is written in two space
numerical particles. Here, it suffices that the velocity distri- dimensions but may easily be extended to the three-dimen-
bution J appearing in the kinetic scheme be a centered sional case. We chose a finite volume method for approxi-
distribution in each direction of the velocity space. Hence, mating the solution of the Navier–Stokes equations (2.4)
this study gives more insight on the commonly made as- which may be written in the following condensed form:
sumption that the numerical particles follow the physical
trajectories. Moreover, the equations (3.16) for Uk(t) and

­tW 1 [­xF(W) 1 ­yG(W)]
(4.1)«k(t) show that the mean velocity and the specific internal

kinetic energy of the numerical particle are equivalent to 1 [­xP(W, =W) 1 ­yQ(W, =W)] 5 Z.
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Here, writing ug 5 (u, v), we have where F 5 [F, G] and P 5 [P, Q]. Finally, assume that
Fi j (resp. Pi j) is a numerical approximation of the flux F

(resp. P) on the interface ­Ci > ­Cj . Let Lij and ni j beW 5 (r, ru, rv, re)T

respectively the length of the interface ­Ci > ­Cj and the
F(W) 5 (ru, ru2 1 p, ruv, (re 1 p)u) outward unit normal to Ci on the interface. Then we write

the following semi-discrete numerical scheme:G(W) 5 (rv, ruv, rv2 1 p, (re 1 p)v)

P(W, =W) 5 (0, eg2­xu 1 l(­xu 1 ­yv), eg(­xv 1 ­yu),
d
dt

Wi 1 O
i?j

Fi j ? ni j
Lij

uCiu
1 O

i?j
Pi j ? ni j

Lij

uCiu
5 Zi .[eg2­xu 1 l(­xu 1 ­yv)]u

1 [eg(­xv 1 ­yu)]v 1 k­x«)
Now, let W n

i (respectively F n
ij , P n

ij , and Z n
i ) denote the

Q(W, =W) 5 (0, eg(­xv 1 ­yu), eg2­xv approximate value of Wi(t n) (respectively Fi(t n), Pi(t n),
and Zi(t n)), where t n 5 n Dt. A first order numerical scheme1 l(­xu 1 ­yv), [eg(­xv 1 ­yu)]u
for the unknowns (Wi)i51,I is

1 [eg2­yv 1 l(­xu 1 ­yv)]v 1 k­y«)

Z 5 (M, I, E). W n11
i 2 W n

i

Dt
1 O

i?j
Fn

ij
Lij

uCiu
1 O

i?j
Cn

ij
Lij

uCiu
5 Z n

i , (4.3)

Note that the subscript g is omitted in the above expres-
sions. The quantity p is the gas pressure, given by p 5 where Fn

ij 5 F n
ij ? ni j and Cn

ij 5 Pi j(W n
i , =W n

i ) ? nij . We
(c 2 1)r(e 2 As(u2 1 v2)), while F and G denote the convec- expect this scheme to be stable under the following CFL
tion fluxes of Eq. (2.4) and, P and Q are the viscous fluxes. condition (note that the diffusion terms are treated implic-

Now, let a mesh be given whose cell are denoted by Ci , itly so that no stability condition is associated with these
1 # i # I. These cells are quadrangles or triangles. In terms),
the cell-center approach, one considers the quantity Wi(t),
defined as the mean value of W over the cell Ci , Dt # DTCFL (4.4)

where DTCFL will be defined later. The end of the sectionWi(t) 5
1

uCiu
E

Ci

W(x, t) dx,
is devoted to the derivation of the approximate fluxes
F n

ij and P n
ij .

Consider first the convection fluxes Fn
ij 5 F n

ij ? ni j . Awhere uCiu denotes the surface of the cell Ci . The numerical
convenient approximation of this flux is provided by thescheme is aimed at defining an approximation of the quan-
solution of a one-dimensional Riemann problem in thetities Wi(t n), 1 # i # I, n $ 0. Of course the quantities
direction normal to the interface whose left and right statesWi(t 0) are given in terms of the initial data. In order to write
are respectively W n

i and W n
j (see [13]). Further, an approxi-the numerical scheme assume first that an exact smooth W

mate Riemann solver may be used. In other words, ifof (4.1) is known. Then integrate Eq. (4.1) over Ci ,
Wij(t . t n) is the value of the exact solution of the Riemann
problem on the interface, we set F n

ij 5 F (Wij), which alsod
dt

Wi 1
1

uCiu
E

­Ci

([F(W)nx 1 G(W)ny]

(4.2)
defines Fn

ij . We call this process a Riemann solver and
denote it in the following condensed way: Fn

ij 5 F(W n
i ,

1 [P(W, =W)nx 1 Q(W, =W)ny]) ds 5 Vi ni j , W n
j ). We use the Roe solver here so that the convection

terms in the scheme (4.3) are written
where ­Ci is the boundary of Ci , n 5 (nx , ny)T is the outward
unit normal to Ci on ­Ci, s is the arc-length abscissa on ­Ci Fn

ij 5 FRoe(W n
i , ni j , W n

j ). (4.5)
and where we have

We expect that Roe’s scheme is stable under the CFL con-
ditionZi(t) 5

1
uCiu

E
Ci

Z(x, t) dx

sup
i, j,p,n

DTCFL
di uln,p

ij u
uCiu

#
1
2

, (4.6)Considering next the cells Cj , neighboring Ci , Eq. (4.2) may
be rewritten as follows:

where di is the diameter of the greatest circle contained
in Ci and (ln,p

ij )p51,4 denote the eigenvalues of the Roe’sd
dt

Wi 1 O
i?j

1
uCiu

E
­Ci>­Cj

F ds 1 O
i?j

1
uCiu

E
­Ci>­Cj

P ds 5 Zi
matrix ARoe(W n

i , ni j , W n
j ) at the interface ­Ci > ­Cj at time
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t n. The main advantage of using Roe’s numerical scheme (4.4), (4.5), (4.6), (4.6), (4.7) plus the expression (4.12)
below of Zn

i Dt, given in the following subsection.is that it provides us with a robust and efficient scheme
for the discretization of the convection terms. But Roe’s

4.2. The Coupling between the Two Phasesmethod may replace some rarefaction waves by nonphysi-
cal discontinuous weak solutions of the Euler system of After the introduction of numerical schemes that com-
gas dynamics. Such spurious solutions are expected when pute approximate values of the quantities relative to both
sonic points are present in rarefaction waves. In order to phases, it remains for us to explain how the source terms
avoid them, an entropy correction is needed. Here, we use in the Navier–Stokes equations (2.4) and in the semi-fluid
Roe’s entropy correction (see [14] for more details). model (2.15) are treated. The method that we use is in-

Consider next the second order term Cn
ij 5 Pij(W n

i , spired by particle in cell approximations.
=W n

i ) ? ni j in the scheme (4.3). Omitting the superscript n, We first consider the approximation of the production
Pi j stands for an approximation of P (W, =W)(ai j), where terms in the system of the Navier–Stokes equations (2.15).
ai j denotes the center of the interface ­Ci > ­Ci , so that Set gn

k 5 (Gn
k , Un

k , E n
k , x n

k , mn
k , r n

k), the vector that character-
we may define izes the kth numerical particle at time t 5 t n. The source

terms in cell Ci are given by the expression
Pi j 5 P (Wij , =Wij),

Zi Dt 5
def Etn11

tn E
Ci

(M, I, E)(x, t) dx dt (4.8)where Wij and =Wij are approximate values of W(aij) and
=W(ai j), respectively. But ai j is the center of ­Ci > ­Cj :
aij 5 As(a2

i j 1 a1
i j), where a6

i j are the vertices of the segment and we want to write the last expression in term of the
­Ci > ­Cj , and we set Wij 5 As(W 2

i j 1 W 1
i j) (resp. =Wij 5 vectors gn

k , 1 # k # K. According to Eq. (2.6), the quantity
As(=W 2

i j 1 =W 1
i j)) where W 6

i j (resp. =W 6
i j) are some approxi- Zi is given by

mate values of W(a6
i j) (resp. =W(a6

i j)). Now, it is possible
to define W 6

i j and =W 6
i j in terms of the unknowns (Wi)i51,I .

Let indeed Cm denote a cell for which a2
i j is a vertex. We Zi Dt 5 Etn11

tn E
Ci
F­t E

v
E

r
ff(v, r) dv dr

(4.9)
define the control volume V (a2

i j) around a2
i j as the union

of the cells Cm that contain a2
i j : V (a2

i j) 5 <m Cm . Then,
we may define W 2

i j as the average 1 =x ?SE
v
E

r
fvf(v, r) dv drDG dx dt.

W 2
i j 5

1
uV (a2

i j)u EV (a2
i j)

W(x) dx 5 O
m

uCmu
uV (a2

i j)u
Wm . Assume for the sake of simplicity that during the interval

of time [t n, t n11] the particles either do not enter the cell
Ci , or stay in the cell Ci . Then, the integral of the divergence

The quantity W 1
i j is defined in the same manner, and finally, term in the last expression vanishes and we may write the

we succeed in writing Wij in terms of the unknowns following expression for Zi :
(Wi)i51,I .

The term =Wij is also defined as =Wij 5 As(=W 2
i j 1

Zi Dt 5
def Etn11

tn E
Ci

(M, I, E)(x, t) dx dt=W 1
i j) and the quantity =W 2

i j (resp. =W 1
i j) is approximated

by the mean of the same quantity over a control volume
around a2

i j (resp. a1
i j). But here, using the Stokes formula, 5 2 O

xk(t)[Ci

([Gn11
k , Gn11

k Un11
k , Gn11

k E n11
k ] (4.10)

we write

2 [Gn
k , Gn

kUn
k , Gn

kE n
k]).

=W 2
i j 5

1
uV (a2

i j)u EV (a2
i j)

=W(x) dx 5
1

uV (a2
i j)u E­V (a2

i j)
W ? n ds

Next, the numerical particle gn
k has a non-zero diameter

and lies in the ball Bn
k with center xn

k and diameter S n
k . WeQ

1
uV (a2

i j)u Oj
LmjWm ? nmj

have thus to consider the following events:

(i) During [t n, t n11], a numerical particle crosses morewith obvious notations. Finally, the viscous terms in the
than one cell.numerical scheme (4.3) are written as follows:

(ii) For some t [ [t n, t n11], xk(t) [ Ci , but the ball
Bn

k is not subset of Ci .Cn
ij 5 P (W n

ij , =W n
ij) ? ni j . (4.7)

The first event means that the center of a numerical
particle may cross different cells during [t n, t n11], so differ-Hence, the scheme for the gas consists of Eqs. (4.3),
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ent values of the data of the gas flow should be considered as in the example calculations below, then the intersection
volumes uBn

k > Ciu are easy to calculate. In the case whereduring one time step. However, in the case of a numerical
scheme of the first order in the space and time variables the control volumes have more complicated shapes, the

calculation of the intersection volumes may become muchevent (i) is not a constraint. Indeed, we expect velocities
of the particles smaller than or comparable to the velocity more difficult.

Finally, considering this coupling, the scheme for theof the waves in the gas. Hence, since the CFL condition
holds for the gas unknowns, during one timestep the length whole system is ‘‘locally’’ conservative on a space scale of

order maxk,n S n
k . Nevertheless the scheme for the wholeof the path of a particle is less than or of order of the size

of a computational cell, which may be written in terms of system is globally conservative, since for any n [ N, we
havethe CFL-like condition for the droplets,

O
i

(W n11
i 2 W n

i ) 1 O
k

([Gn11
k , Gn11

k Un11
k , Gn11

k E n11
k ]

sup
i,ki,n

Dt
uun

ki
u

di
# 1, (4.11)

2 [Gn
k , Gn

kUn
k , Gn

kE n
k]) 5 0,

where di is the diameter of the cell Ci . Consequently, one
where we omit the boundary conditions.can compute here the motion of a given numerical particle

of index k thanks to the gas variables at (xn
k , t n). In the Remark 4.1. The motion of the numerical particle lo-

case of a second order numerical scheme, modifications of cated at xi(t) depends on the datas of the gas flow at position
the method are needed (see Section 4.3 below). xi(t) and time t. Since the gas is discretized by a finite

Now, consider the second event. When the size S n
k of a volume approach, we had to interpolate the datas of the

numerical particles exceeds that of the surrounding cells, gas flow field on the particles, then project the datas of
we may proceed in one of the following two manners. First, the particles on the mesh. Similar difficulties appear in the
we can split the numerical particle. However, in strongly PIC methods (see [15]).
turbulent flows this first method may increase the number
of numerical particles exponentially. Hence, a second man- 4.3. Extensions
ner of dealing with this event is to use a random walk: if

The numerical method described above extends to morea numerical particle has the volume S n
k exceeding that of

general physical laws for the motion of the droplets andthe surrounding cells, we proceed to a random walk of
to the second order in time and space variables in thelength (S n

k)1/2 and then set the dimension of the numerical
following manner.particle to zero. This random walk is consistent with the

For a general drag force written in the formdiffusion term in the Fokker–Planck equation and may be
interpreted as follows: the pdf f, solution of the Fokker–
Planck equation (2.9), represents the motion of particles dv

dt
5 2

1
tr

(v 2 ug), (4.13)
in a turbulent gas flow. However, the function f is a mean
solution in a statistical sense. Consider a single particle in

where tr is the characteristic time of the motion of a dropleta turbulent gas flow. Its motion is a random walk. Here,
of radius r in the gas and may be a complex function ofthe pdf f accounts for all the possible random walks of the
all the variables of the system, we simply set in our methodparticle. Hence, though a numerical particle may represent
the drag force coefficient c at time t n as c 5 (1/tr)(t n) andonly a few physical particles, that is, Sk(0) Q 0 at time
compute the motion of the droplet during the timestept 5 0, we may have for t . 0, Sk(t) . 0, accounting for the
[t n, t n11].uncertainty about the position of the droplets at t . 0.

We proceed in the same manner for a vaporization lawMore details concerning the statistics of the motion of
written in the formthe droplets in a turbulent gas flow field are available in

Ref. [2].
Finally, the exchange term in the scheme (4.3) for the dr

dt
5 2

K
2r

, (4.14)
gas are written as follows:

where K is no longer a constant but any function of the
Zi Dt 5 2O

k

uBn
k > Ciu
uBn

ku
([Gn11

k , Gn11
k Un11

k , Gn11
k E n11

k ]

(4.12)
variables of the system.

Now, for the extension of the method to the second
2 [Gn

k , Gn
kUn

k , Gn
kE n

k]). order in space, we proceed in the following manner. Here,
the data of the gas flow are known as polynomials of the
first order in each cell. Let a numerical particle k be in theHowever, if the control volumes Ci are simple, rectangles,
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cell Ci at time t n. We interpolate at the second order the Q 5 MT/T. Hence, every Dti s, a numerical particle is in-
jected with a random velocity as described before. Eachvelocity un

g of the gas at the position xn
k of the numerical

particle and then predict the position x̃n11
k of the numerical numerical particle represents a group of droplets of radius

r with total mass Mp 5 Q Dti 5 (MT/T) Dti .particle at time t n11 therefore located in the cell C̃i . More-
over at x̃n11

k , the gas velocity is ũn11
g , the drag coefficient The results of the computations are shown in Fig. 1: we

show the repartition of the computed mass of the dropletsis (1/tr̃)(t n11) and the vaporization coefficient is K̃(t n11).
Finally, we calculate again the motion of the numerical in the chamber every 0.1 ms between 0.1 and 1 ms.

We observe how the spray evolves and splits due to theparticle located at the initial position xn
k at time t n which

‘‘sees’’ the gas velocity (un
g 1 ũn11

g )/2, with drag coefficient recirculation of the gas in the chamber. Also, the diameter
of the liquid jet increases with the distance from the injec-[(1/tr)(t n) 1 (1/tr̃)(t n11)]/2 and vaporization coefficient

[K(t n) 1 K̃(t n11)]/2. The motion of the numerical particle is tion point, due to the interaction between the droplets
and gas. As usual when Lagrangian methods are used, thetherefore computed at the second order and the exchange

terms induced by the motion of the numerical particle are interface between the liquid jet and the region with no
droplets in the chamber is easily and precisely computed.equally distributed to the cells Ci and C̃i . This procedure

gives a second order numerical scheme in the space vari- The mean velocity field at time t 5 1 ms is shown in Fig.
2. The maximal computed velocity is 93.2 m/s.able for the system.

For extension to second order in time, it suffices to use In this computation, taking the gas quantities as constant,
we integrate exactly the trajectory of the numerical parti-a classical operator splitting method where a timestep of

size Dt consists now in the following sequence: cles, thanks to formula (3.18). However, many popular
methods use the following quadrature to determine the

• During Dt/2, compute the motion of the numerical position of the numerical particles at time t n as a function
particles and exchange moments with the gas. of the position in the phase space at time t n,

• During Dt, compute the motion of the gas.

• During Dt/2, compute the motion of the numerical
particles and exchange moments with the gas. Hx(t n11) 5 x(t n) 1 v(t n) Dt

v(t n11) 5 (1 2 c Dt)v(t n) 1 c Dt un
g ,

5. NUMERICAL RESULTS
where Dt 5 t n11 2 t n. Moreover, when c Dt . 1 we must
impose v(t n11) 5 un

g . This means that when the time• We first consider the case of the injection of droplets
of water into a closed chamber. In this experiment we tdrag 5 1/c of capture of a droplet is larger than the time-

step Dt, we impose that the velocity of the droplet equalsconsider the non-turbulent equation for the spray, that is,
the diffusion coefficient D in Eq. (2.9) is zero. The chamber that of the gas. In order to evaluate the differences between

the two methods, we introduce the local relative erroris 10 cm long and 5 cm high and contains air at the tempera-
ture T 5 300 K, at atmospheric pressure: p 5 105 Pa. We um1 2 m2u(x)/max(m1(x), m2(x)) in each cell. Here, m1(x)

is the mass of droplets computed with the exact expressionsset here for the viscosity of the gas eg(x) 5
e0

gÏT(x)m2/s, where T(x) is the gas temperature in Kelvin given in formula (3.18), m2(x) is the mass of droplets com-
puted with the approximation formula above. Hence, thisand e0

g 5 1.26 3 1026. Then the volume is discretized with
square shaped cells of size 1.25 mm. error is a local measure of the differences between the two

methods and ranges in the interval [0, 1]. We plot thisThe nonevaporating droplets are injected during the in-
terval of time T 5 1 ms from the left side of the chamber, error in Fig. 3 below. Note that the relative error equals 1 in

a given cell when one of the two methods predicts a positivein the horizontal direction. The droplets that are injected
all have the same radius r 5 5 em: we say that the spray mass in the cell while the other method predicts that there

are no droplets in that cell. Therefore, a significant ‘‘local’’is monodisperse. The total mass of liquid is MT 5 5 3
1023 kg, and this mass is of the same order as the mass of relative error between the two methods does not mean a

significant difference between the aspects of the two-phasethe gas initially contained in the chamber. The droplets
are injected with a velocity V 5 100 m/s. The vertical flow observed in the two methods. However, roughly speak-

ing, this ‘‘local’’ error measures the ratio of mass that onecomponent Vy is randomly chosen in the interval [28
m/s, 1 8 m/s] with a uniform law. The horizontal compo- should displace from a given cell to a neighboring cell in

order toobtain thesprayobserved inafirstexperimentwhennent of the injection velocity is then Vx 5 (1002 2
V 2

y)1/2. Now, let K 5 90 be the number of numerical parti- given the spray in a second experiment. Finally, we expect
that the error increases whenthe dragcoefficient c increases,cles per cell near the injector. Then the interval of time

between the injection of two packets of particles is Dti 5 that is when we consider smallest droplets. We observe here
that the local relative error concentrates in the recircula-Dx/(KV), where V is the injection velocity and Dx is the

width of the cells. Finally, the mass flow of the injector is tion zone.
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FIG. 1. First experiment: chamber without turbulence modeling. Mass of the liquid in the chamber for times 0.1 to 1 ms.

Now, we compute the global relative error at final time where MT is the total mass injected. Hence, this global
relative error measures the mass displaced when the sprayt 5 1 ms,
is computed by one method or the other. This total mass
equals only 1% of the total mass injected, which is not veryim1 2 m2i1

MT
,

much. We believe that the coupling with the gas stabilizes
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the two-phase fluid flow and therefore limits the effect of and in order to test the capabilities of our numerical
the local relative errors in the global behavior of the spray. method, we shall use such a simple law (5.1) in the sequel.

Indeed, at time t 5 0, we set the internal kinetic energy
• In a second experiment, we consider small scale tur- Ek and the size Sk of each numerical particle injected as

bulence in the gas flow, which means that we take a non- Ek 5 0 m2/s2 and Sk 5 0.3 mm. Here, the value of Sk is
zero diffusion coefficient D in the spray equation (2.9). typical of the diameter of a liquid jet injected in a Diesel
Following [2], we know that the diffusion coefficient D engine. The correlation time of the small eddies is taken
may be computed in terms of the gas phase turbulent

as td 5 0.1(1/c(r)) where tdrag 5 1/c(r) Q 2.5 3 1024 s is
kinetic energy and the correlation time of the turbulence.

the ‘‘capture time’’ of a droplet. That is, we consider that
More precisely, the diffusion in the spray equation ac-

the turbulent correlation time is smaller than the capture
counts for the effects of the small scale turbulent structures

time. According to the discussion above, the specific turbu-in the gas velocity field while the large structures should
lent kinetic energy of the small eddies is taken as K (x) 5be taken into account separately, for instance by means
1026(ug(x) 2 up(x))2 where up is the mean velocity of theof a random component in the gas velocity. We thus need
droplets in the cell containing the point x.a model that gives the turbulent kinetic energy in the gas

The shape of the spray and the velocity field of the gasflow and the correlation time of the turbulence that should
are very similar to that obtained in the first experiment,be considered to compute D.
with no turbulence modeling. The maximal velocity of theVery few two-phase flow turbulence models are avail-
gas at time 1 ms is now 92.8 m/s, slightly smaller than inable. The presence of the dispersed phase should indeed
the first experiment. Actually, it seems important to usinfluence the Kolmogorov cascade deeply: some character-
to remark that introducing the effect of the small scaleistic length scales of the turbulence spectrum should be
turbulent structures introduces a new term of energy ex-attenuated, which means that the presence of the particles
change between the two phases (compare Eqs. (2.7) andinduces a sink in some part of the energy spectrum, while
(2.11)). In other words, we may consider that some energysmall eddies are expected in the wake of the particles.
of the gas is transfered to the physical droplets of any givenHere, omitting the small scale turbulent structures pro-
numerical particle.duced by the Kolmogorov cascade, we may try to evaluate

Now, even if the general aspects of the two-phase fluidthe small scale turbulent structures directly induced by the
flow in the two experiments are very similar, we may lookpresence of the particles. Then, according to a dimensional
at the local relative error for the mass of the liquid betweenanalysis, we expect that the associated gas phase turbulent
the two methods (see Fig. 4). This error still ranges in thekinetic energy has the form
interval [0, 1] and is quite important (compare with Fig. 3).
Moreover we notice that the error is larger at the interface

K 1/2 5 C(1 2 a)iup 2 ugi m/s,
between the jet of droplets and the gas:

Then, though the shape of the spray is very similar to
where 1 2 a is the volume fraction of the dispersed phase,

that obtained in the first experiment, the global relativeup is the mean velocity of the dispersed phase, ug is the
error between the two methods is now 7% of the totalmean gas velocity, and C is an unknown coefficient. We
mass injected and is thus quite important.shall take here

Finally, in our calculations the size of the numerical
particles at the final time t 5 1 ms ranges from 0.3 mm

(5.1)K 5 (1 2 a)2(up 2 ug)2, to 0.7 mm (see Fig. 5). The biggest numerical particles
concentrate in the recirculation zone.

where we set C 5 1. Of course, more elaborate two-phase
• In a third experiment, we consider a 2-m long andturbulence models that compare to experiments should be

used but, as a first step toward more realistic computations, 1-m high channel containing air at a temperature of 300 K

FIG. 2. First experiment: chamber without turbulence modeling. Velocity of the gas at time t 5 1 ms.

FIG. 3. First experiment: chamber without turbulence modeling. Comparison between the case where the trajectories of the particles are
computed with exact integration formulas or by the finite differencing method. We plot in each cell the relative error um1 2 m2u/max(m1 , m2) of
the mass of liquid at time t 5 1 ms, where the index refers to each calculation.

FIG. 4. Comparison between the first experiment, chamber without turbulence modeling, and the second experiment, chamber with turbulence
modeling. We plot in each cell the relative error um1 2 m2u/max(m1 , m2) of the mass of liquid at time t 5 1 ms, where the index refers to each calculation.
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at atmospheric pressure. The top and bottom boundaries to approximate the continuous law, the mass of particles
injected at time t 5 p Dti is given by the expressionof the channel are walls. The gas is injected on the left

boundary of the channel with a velocity of 100 m/s and
goes out through the right boundary of the channel. The

m 5 max HMT
(p Dti)

T
2 M((p Dti)2), 0J , (5.3)mesh consists in square-shaped cells of size 2 cm.

At time t 5 0, we begin the injection of non-vaporizing
droplets. Here, the spray is polydisperse and the liquid is

and the total mass of droplets at time (p Dti)1 is thus exactlywater. The injector is located at the center of the bottom
MT(p Dti)/T. With this algorithm, we inject a total masswall. The direction of injection is 458 towards the left and
Mi 5 9.99976 kg instead of MT 5 10 kg, which proves thethe injection lasts for 0.1 s. The injection velocity is 100
accuracy of the injection method. Finally, the injected massm/s with a transverse component ranging in the interval
of liquid is very important since it corresponds to 100 kg[220 m/s, 120 m/s]. The total mass injected is MT 5 10 Kg,
per second. This computation was performed in order toand, setting here K 5 20, Dti 5 Dx/(KV) is the interval
check the robustness of the whole numerical method.of time between the injection of two numerical particles.

Moreover, we take into consideration the possibleFollowing Dukowicz, the distribution of radii of the poly-
break-up of the droplets thanks to a simple phenomenolog-disperse spray is given by the exponential law
ical model: let We denote the Weber number of a droplet
with radius rk ,

F(r) 5
3

rDB
exp S2

3r
rDB

D , (5.2)

We 5
rgu=uu2rk

s
,

where rDB 5 5 mm is the DeBroukier radius. Since we
consider a finite number N of radii, we introduce the where rg is the gas mass density at the position of the

droplet, Du the relative velocity between the droplet andequiprobable family (rk)k51,N of radii where rk 5 (rDB/3)
log[(N 1 1)/(N 1 1 2 k)]. In the limit where N goes to the surrounding gas, and s 5 0.073 kg/s2 is the surface

tension of water at a temperature of 300 K. When a drop-infinity the family (rk)k51,N reproduces the exponential law.
However, the smallest radius of a numerical particle is let’s Weber number becomes larger than a critical number

(usually between 7 and 10), the droplet breaks up after ahere r1 5 (rDB/3) log[(N 1 1)(N)] Q rDB/(3N) and it is
necessary to bound N so that r1 remains physically ac- time interval that itself depends on the Weber number

(see [16]). The result of the break-up is difficult to predict.ceptable.
Let us make precise the numerical injection of droplets: However, we shall assume here that the droplets obtained

from the breaking drop all have the same radius and athe time interval between two injections is Dti and may
differ from Dt. When n Dt # p Dti , (n 1 1) Dt for some pair Weber number less or equal to 1. Of course a more realistic

break-up model should be used in practical approximationsof integers (n, p) an injection of droplets occurs between t n

and t n11. We randomly chose a radius rk with 1 # k # N but such a simplified model physically meaningful results
to be obtained.and we decide that every droplet injected at time p Dti has

radius rk . In order to determine the mass of the numerical We show in Fig. 6 below the mass of the droplets inside
the channel at time t 5 10 ms. We observe the curvatureparticle injected at time p Dti (or equivalently, the number

of droplets taken into account in the numerical particle), of the droplet jet due to interaction with the gas velocity
field. The velocity field at time t 5 10 ms ranges betweenwe require that the mass flux of the liquid phase is constant:

let us denote by M(t) the total mass of liquid already 2 and 170 m/s. It is shown in Fig. 7 below. We note that
the presence of the droplets induces an important perturba-injected at time t. If the injection process were continuous

we could impose M(t) 5 MTt/T, where MT denotes the tion of the gas flow and a recirculation behind the liquid
jet. Finally, the relative error between the droplet masstotal mass of droplets injected at the end of the experiment.

Here, the injection process is a discrete one and, in order distributions, obtained thanks to the exact integration for-

FIG. 5. Second experiment: chamber with turbulence modeling. Size of the numerical particles at time t 5 1 ms in each cell. The size of the
numerical particles ranges from 0.3 mm to 0.7 mm.

FIG. 6. Third experiment: channel without turbulence modeling. Mass of the liquid in the channel at time t 5 10 ms.

FIG. 7. Third experiment: channel without turbulence modeling. Velocity of the gas in the channel at time t 5 10 ms.
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FIG. 8. Third experiment: channel without turbulence modeling. Comparison between the case where the trajectories of the particles are
computed with exact integration formulas or by the finite differencing method. We plot in each cell the relative error um1 2 m2u/max(m1 , m2) of
the mass of liquid at time t 5 10 ms, where the index refers to each calculation.

mula of the characteristics on the one hand and thanks to subcycling of the timestep. The use of exact integrated
expressions is therefore an important tool. However, weEuler’s explicit first order integration formula on the other

hand, is given in Fig. 8. Here the global relative error keep in mind that of course this may not be the main
source of error when realistic two-phase fluid flows arebetween the two methods is about 1.5% of the total

mass injected. computed. Indeed, one must first write more complex and
realistic physical laws for the motion of the droplets, while
we used in our computational examples the simplest ones.6. CONCLUSION

Hence, this work is a first step toward a new numerical
The semi-fluid model allows us to gain more insight into method for this type of systems but still much remains to

the meaning of numerical particles in the domain of spray be done: convergence of the method, comparison to fully
computation. We emphasize in this paper the general hy- kinetic models, and comparison with experiment. The nu-
pothesis that permit one to treat a numerical particle like merical scheme introduced here for discretizing the semi-
a physical one. This is possible in this study first, since fluid model is elegant and efficient and therefore we believe
the velocity distribution of the droplets is assumed to be that the numerical work presented here is a framework
isotropic; second, because the spray obeys the linear trans- for future more complex physical descriptions of dispersed
port equation (without collision terms); third, because the two-phase flows. In particular, the study of a two-phase
data on the gas flow are assumed to be constant in each flow turbulence model of k 2 « type is in progress.
cell of the computational domain when we compute the
unknowns for the spray; and fourth, because we use the

A. APPENDIX: MATHEMATICAL RESULTSsimple Stokes drag force. Finally, we insist on the fact that
it is important to take into account the size of the numerical This appendix is devoted to the derivation of some math-
particles since this size is needed for the coupling between ematical properties of the Fokker–Planck equation (2.9),
the two phases (see Remark 3.2 and Section 4.2).

We believe that using exact expressions for the charac-
­t f 1 =x ? ( fv) 1 =v ? ( fb) 1 ­r( f R) 2 =v ? (D=v f ) 5 0,teristics of the droplets as well as taking into account the

size of the numerical particle is important. Indeed, concern-
ing the computation of the motion of the droplets, the use where b 5 b(v, r) and D 5 D(r) are defined by (2.3) and
of a time step small enough that the particles’ trajectory (2.10), respectively. Its solution may be written explicitly
is accurately computed would dramatically increase the as follows:
computational cost. For example, in the case of vaporizing
sprays, it is never necessary with our method to use a THEOREM A.1. (Solution of the Fokker–Plank Equa-
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tion). Let f0 be given. The solution f of the Fokker–Planck
­t f̃(x, v, r, t) 5

D(R(t; r, 0))
h2

1(t)
(a2

1(t) Dx f̃ 2 2a1(t)(=x ? =v) f̃equation (2.9) with initial data f0 is written

1 Dv f̃ )(x, v, r, t),
(A.6)

f(x, v, r, t) 5 (St f0) 5
1

uJr(t)u

where a1 and h1 are the coefficients of the characteristics,E
x9
E

v9
GR2(X2 2 x9, V2 2 v9, t)f0(x9, v9, R2) dx9 dv9, defined in Eq. (3.9). Setting

(A.1)

cr(t) 5 ÏD(R(t; r, 0))/h2
1 , fr(t) 5 ÏD(R(t; r, 0))a2

1/h2
1 ,

where 1/uJr(t)u is the Jacobian ­(X2, V2, R2)(t)/­(x, v, r) and

one recovers the expressions of fr and cr defined in Theo-
Gr(x, v, t) 5

1
(2f)d Dd/2

r (t)
exp(2(ar(t)x2

rem A.1. Hence, we are left to solve Eq. (A.6) in each of
the d directions of Rd

x 3 Rd
v , and we only need the follow-

1 2hr(t)x ? v 1 br(t)v2)/2 Dr(t)). ing lemma:

LEMMA A.2. Let f(t) and c(t) be two arbitrary func-Here,
tions of time. The solution in 1D of

5ar(t) 5 2 Et

0
c 2

r(s) ds, br(t) 5 2 Et

0
f2

r(s)

hr(t) 5 2 Et

0
fr(s)cr(s) ds, Dr(t) 5 ar(t) 2 hr(t)

(A.2) H­t G 5 f2
r (t)­xx G 2 2fr(t)cr(t)­xv G 1 c 2

r(t)­vvG

G(x, v, 0) 5 d(x) J d(v),

where d denotes Dirac’s d function, is given bywhere

G(x, v, t) 5
1

2f D1/2 exp(2(a(t)x2

5cr(t) 5 SD(R(t; r, 0))
h2

1(t) D1/2

fr(t) 5 SD(R(t; r, 0))a2
1(t)

h2
1(t) D1/2

.
12h(t)xv 1 b(t)v2)/2 D(t))

with
The numbers a1(t) and h1(t) in the above expressions are
the coefficients of the characteristics defined in Eq. (3.9).

Proof. Let us define the function f̃ by 5a(t) 5 2 Et

0
c 2(s) ds, b(t) 5 2 Et

0
f2(s) ds

h(t) 5 2 Et

0
f(s)c(s) ds, D(t) 5 a(t)b(t) 2 h(t).

f̃(x, v, r, t) 5 Jr(t) f(X1, V1, R1, t). (A.3)

where Proof. The proof of Lemma A.2 may be found in Chap.
II of the article of S. Chandrasekhar (See [9]).

In other words, the solution f̃(x, v, r, t) of (A.3) may beJr(t) 5 exp SEt

0
(­r R 1 =v ? b)(R(s; r, 0)) dsD. (A.4)

written in terms of a convolution operator in (Rx 3 Rv),

A straightforward computation proves that f̃ is a solu-
f̃(x, v, r, t) 5 E

x9
E

v9
Gr(x 2 x9, v 2 v9, r, t) f0(x9, v9, r) dx9 dv9,tion of

(­t f̃ )(x, v, r, t)
(A.5) where Gr is defined in Theorem A.1. Thanks to Eq. (A.3),

5 Jr(t)D(R(t; r, 0))(Dv f )(X1, V1, R1, t). this means that the solution f of the Fokker–Planck equa-
tion (2.9) is given exactly by the expressions in Eq. (A.1).
Note that the solution f is not written in terms of a convolu-Thanks to Eq. (A.3) and the expression of the characteris-

tics, the second term of Eq. (A.5) may be rewritten in tion operator.
Now, let us identify the function Jr(t). We note that theterms of derivatives of f̃ , so that
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